AMMC-5023

23 GHz Low Noise Amplifier

Description

Avago's AMMC-5023 is a high gain, low noise amplifier that operates from 21 GHz to over 30 GHz.

The device has good input and output match to 50 Ohm and is unconditionally stable to more than 40 GHz

Lifecycle status: Active

Features

Frequency Range: 21.2 - 26.5 GHz

High Gain: 23 dB

Low Noise Figure: 2.3 dB

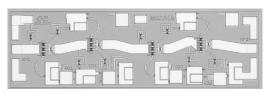
Input and Output Return Loss: < 10 dB Single Supply Bias 5 volts, 28 mA Optional Bias Adjust

Applications

Digital Radio Communication Systems (21.2–23.6 GHz and 24.5–26.5 GHz)

Any narrow band application within 21 –26 GHz

24.1 GHz collision avoidance


Front-end gain stage

AMMC-5023

23 GHz Low Noise Amplifier (21.2 – 26.5 GHz)

Data Sheet

Chip Size: 1880 x 600 μm (74 x 23.6 mils)

Chip Size Tolerance: $\pm 10 \, \mu m \, (\pm 0.4 \, mils)$ Chip Thickness: $100 \pm 10 \, \mu m \, (4 \pm 0.4 \, mils)$

Pad Dimensions: 80 x 80 μm (3.1 x 3.1 mils), or larger

Description

Avago's AMMC-5023 is a high gain, low noise amplifier that operates from 21 GHz to over 30 GHz. By eliminating the complex tuning and assembly processes typically required by hybrid (discrete-FET) amplifiers, the AMMC-5023 is a cost-effective alternative in both 21.2–23.6 GHz and 24.5–26.5 GHz communications receivers. The device has good input and output match to 50 Ohm and is unconditionally stable to more than 40 GHz. The backside of the chip is both RF and DC ground. This helps simplify the assembly process and reduces assembly related performance variations and costs. It is fabricated in a PHEMT process to provide exceptional noise and gain performance. For improved reliability and moisture protection, the die is passivated at the active areas.

Features

• Frequency range: 21.2 - 26.5 GHz

• High gain: 23 dB

• Low noise figure: 2.3 dB

• Input and output return loss: >10 dB

• Single supply bias: 5 volts, 28 mA

• Optional bias adjust

Applications

 Digital Radio Communication Systems (21.2–23.6 GHz and 24.5–26.5 GHz)

• Any narrow band application within 21 – 26 GHz

• 24.1 GHz collision avoidance

• Front-end gain stage

Absolute Maximum Ratings[1]

Symbol	Parameters/Conditions	Units	Min.	Max.
$\overline{V_{D1}, V_{D2}}$	Drain Supply Voltage	V		8
V_{G1} , V_{G2}	Gate Supply Voltage	V	0.4	2
I _{D1}	Drain Supply Current	mA		35
I _{D2}	Drain Supply Current	mA		35
P _{in}	RF Input Power	dBm		15
T_{ch}	Channel Temperature	°C		+150
$\overline{T_b}$	Operating Backside Temperature	°C	-55	+140
T_{stg}	Storage Temperature	°C	-65	+165
T _{max}	Max. Assembly Temp (60 sec max)	°C		+300

Notes:

1. Absolute maximum ratings for continuous operation unless otherwise noted.

AMMC-5023 DC Specifications/Physical Properties[1]

Symbol	Parameters and Test Conditions	Units	Min.	Тур.	Max.
$\overline{V_{D1}, V_{D2}}$	Recommended Drain Supply Voltage		3	5	7
V _{G1} , V _{G2}	Gate Supply Voltage ^[2] V 0.8 $V_{D1} \le V_{D1(max)}$, $V_{D2} \le V_{D2(max)}$)		0.8		
I _{D1} , I _{D2}	Input and Output Stage Drain Supply Current $(V_{G1} = V_{G2} = Open, V_{D1} = V_{D2} = 5 V)$	mA		14	
I _{D1} +I _{D2}	Total Drain Supply Current $(V_{G1} = V_{G2} = Open, V_{D1} = V_{D2} = 5 V)$	mA	13	28	35
θ_{ch-b}	Thermal Resistance ^[3] (Backside temperature, $T_b = 25$ °C)	°C/W		44	

Notes:

- Backside ambient operating temperature T_A = 25°C unless otherwise noted.
 Open circuit voltage at V_{G1} and V_{G2} when V_{D1} and V_{D2} are 5 Volts.
 Channel-to-backside Thermal Resistance (θ_{ch-b}) = 66°C/W at T_{channel} (T_c) = 150°C as measured using the liquid crystal method. Thermal Resistance at backside temperature (T_b) = 25°C calculated from measured data.

RF Specifications^[4]

$$(V_{G1} = V_{G2} = Open, V_{D1} = V_{D2} = 5V, I_{D1} + I_{D2} = 28 \text{ mA}, Z_{in} = Z_0 = 50\Omega)$$

Symbol			21.2 – 23.6 GHz			24.5-26.5 GHz			
	Parameters and Test Conditions		Units	Min.	Typ.	Max.	Min.	Typ.	Max.
$ S_{21} ^2$	Small-signal Gain		dB	21	23.6	28	17	19	25
$\Delta S_{21} ^2$	Small-signal Gain Flatness		dB		±1.5			±1.2	
RL _{in}	Input Return Loss		dB	10	12		10	11.5	
RL _{out}	Output Return Loss		dB	9	12		10	17	
$ S_{12} ^2$	Isolation		dB	40	50		40	43	
P _{-1dB}	Output Power @ 1 dB Gain Comp f = 23 GHz	ression	dBm		9.5			10	
P _{sat}	Saturated Output Power (@ 3 dB Gain Compression)		dBm		10.5			11.5	
OIP3	Output 3^{rd} Order Intercept Point, Rf _{in1} = Rf _{in2} = -20 dBm, Δf = 2 MHz		dB		18			24	
NF	Noise Figure	22 GHz 25 GHz	dB		2.3	2.8		2.3	2.8

Note:

^{4. 100%} on-wafer RF test is done at frequency = 21.2, 22.4, 23.6, 24.5, 25.5 and 26.5 GHz, except as noted.

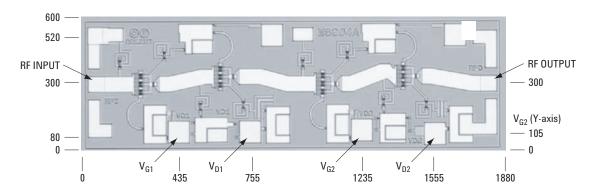


Figure 21. AMMC-5023 Bonding Pad Locations. (dimensions in micrometers)

Ordering Information

AMMC-5023-W10 = 10 devices per tray AMMC-5023-W50 = 50 devices per tray

